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SUMMARY

This paper describes the extension of the Cartesian cut cell method to applications involving unsteady
incompressible viscous fluid flow. The underlying scheme is based on the solution of the full Navier–
Stokes equations for a variable density fluid system using the artificial compressibility technique together
with a Jameson-type dual time iteration. The computational domain encompasses two fluid regions
and the interface between them is treated as a contact discontinuity in the density field, thereby eliminating
the need for special free surface tracking procedures. The Cartesian cut cell technique is used for fitting
the complex geometry of solid boundaries across a stationary background Cartesian grid which is located
inside the computational domain. A time accurate solution is achieved by using an implicit dual-time
iteration technique based on a slope-limited, high-order, Godunov-type scheme for the inviscid fluxes,
while the viscous fluxes are estimated using central differencing. Validation of the new technique is by
modelling the unsteady Couette flow and the Rayleigh–Taylor instability problems. Finally, a test case for
wave run-up and overtopping over an impermeable sea dike is performed. Copyright q 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Motions of fluids with a free surface are important phenomena in many fields of civil and coastal
engineering and this has led to the development of a range of numerical modelling techniques.
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Accurate simulation of such flows is a difficult problem since the location of the free sur-
face is not only driven by the gross motions of the fluid but drives that fluid motion. To
be useful, the selected technique must be able to cope with a free surface which becomes
highly distorted, multiply valued, and which undergoes gross topological changes including
break-up and recombination. The successful approaches for handling free surface problems can
be broadly grouped into two categories: surface fitting methods and surface tracking
methods.

Surface fitting methods solve the flow in the fluid region only and the free surface is treated
as a moving boundary of the computational domain, which satisfies the kinematic boundary
conditions. In this technique, free surface locations can be recognized precisely. Several
researchers [1–3] have applied this method to a variety of free surface flow problems. How-
ever, this technique requires frequent repositioning of computational grid points, thus, numerical
errors and lower numerical stability may occur. Furthermore, when the free surface becomes
highly distorted, during wave breaking, for example, the numerical simulations become difficult to
perform.

Surface tracking methods simulate both fluid regions on a fixed grid system, with the free
surface being identified by a marker function such as the marker particles in the marker and
cell (MAC) method [4] or the volume fraction function in the volume of fluid (VOF) method
[5–7]. In these methods, a transport equation for the marker function is solved at each time
step and the shape of the free surface can then be reconstructed from the distribution of the
marker fraction. This method can define sharp interfaces and is robust. However, the track-
ing and reconstruction of free surfaces remains complicated and difficult, especially in three
dimensions [8].

Several alternative methods have appeared in recent years which address some of the short-
comings of the previous surface fitting and surface tracking schemes. Unverdi and Tryggvason [9]
developed a front-tracking scheme which solved for the liquid and gas flow fields on a stationary
grid and represented the free surface using a separate unstructured grid. Sussman et al. [10] pre-
sented an approach based on the level set method, which used the zero level set of a smooth function
to identify the free surface. Kelecy and Pletcher [11] presented a free surface capturing technique
which computed free surface flows within closed containers, but the numerical smearing of the
free surface was quite severe. Pan and Chang [12] reduced the smearing by introducing a slope
modification method. More recently, Qian et al. [13, 14] extended this technique to inviscid flow
fluid calculations in a Cartesian cut cell framework and successfully simulated free surface flows
involving the gross motion of solid objects. This approach views the free surface as a discontinuity
in the density field and the material interface is automatically captured as part of the evolving
numerical solution, along with other flow variables such pressure and velocity, by enforcement of a
conservation law.

This paper gives brief details of an extended version of the inviscid, surface capturing solver
discussed by Qian et al. [13, 14]. The present code solves the incompressible Navier–Stokes
equations and utilizes the Cartesian cut cell technique in order to generate boundary conforming
mesh representations of any solid bodies inside the computational domain. This has the advan-
tage that complex geometric or moving bodies in the flow domain can be easily represented
[15–17].

To demonstrate the present method, results are presented for unsteady Couette flow, Rayleigh–
Taylor instability, and the wave run-up and subsequent overtopping over an impermeable
sea dike.
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2. GOVERNING EQUATIONS

For incompressible, unsteady, viscous flows, the two-dimensional Navier–Stokes equations with a
variable density field can be modified by the artificial compressibility method and written as the
integral form

�
�t

∫ ∫
�
Qd� +

∮
S
F · n ds =

∫ ∫
�
Bd� (1)

where � is the domain of interest; S is the boundary surrounding �, n is the unit normal to S in the
outward direction. Q is the vector of conserved variables. F is the vector of flux function through
S and B is the body forcing function. These equations in order are conservation laws for the mass
(density) and two components of momentum, together with an incompressibility constraint, which
adds a time derivative of pressure to the continuity equation. By using the artificial compressibility
method and assuming the only body force is gravity, Q, F and B are

Q= [�, �u, �v, p/�]T

F= FI − FV = (fI − fV)nx + (hI − hV)ny

B= [0, 0, −�g, 0]T

fI = [�u, �u2 + p, �uv, u]T

hI = [�v, �uv, �v2 + p, v]T

fV =
[
0, �

�u
�x

, �
�v

�x
, 0

]T

hV =
[
0, �

�u
�y

, �
�v

�y
, 0

]T

(2)

where the superscripts I and V denote the inviscid and viscous flux, respectively, nx and ny are
the unit vectors along x and y co-ordinate directions, � is the density, p is the hydrodynamic
pressure, u and v are the velocity components, � is the coefficient of artificial compressibility,
g is the gravitational acceleration and � is the dynamic viscosity coefficient.

The addition of the pseudo-time derivative term in the continuity equation directly couples the
pressure and velocity at the same time level, which make the governing equations hyperbolic in
space–time [18]. The new system of equations may then be iterated in pseudo-time, �, until a
steady state is achieved and the divergence-free velocity field condition is satisfied. Several well-
known and stable time-marching techniques can be employed, which include a finite difference
method [19, 20], an explicit multi-stage scheme [21], a flux-difference splitting scheme [22], a total
variation diminishing (TVD) scheme [12] and a characteristics-based Godunov-type scheme [13].
In the steady state, the pseudo-time derivative term vanishes, satisfying the conservation of mass.
For unsteady flow problems, however, a divergence-free velocity field must be attained at every
time step. This can be achieved by using a dual-time stepping technique [21] and sub-iterating the
equations in the pseudo-time domain to achieve a steady-state solution at each physical time step.
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3. BOUNDARY CONDITIONS

The conditions at the boundaries enclosing the computational domain must be specified to com-
pletely define the problem. In the present study for hydraulic flow problems, there are four kinds
of boundaries and a special treatment for the free surface is not required. The exact treatment
of each boundary depends on the number of inward and outward pointing characteristics at the
boundary. Since the system of equations under consideration is hyperbolic, all the characteris-
tic speeds (eigenvalues) are real. For a boundary aligned with the y-ordinate, the four relevant
characteristic speeds are

� = u −
√
u2 + �, 0, u, u +

√
u2 + � (3)

(i) Inflow boundary: The two components of velocity are specified at this boundary, the pressure
and density are extrapolated from the interior of the computational domain by assuming a
zero gradient. This definition allows the desired waves to propagate into the computational
domain through this boundary.

(ii) Outflow boundary: The pressure at this boundary is fixed and a zero gradient condition is
applied to the velocity and density. This definition allows fluids to freely enter or leave the
computational domain according to the local flow velocity and direction.

(iii) Solid wall boundary: At these boundaries, which are represented using Cartesian cut cells,
the no-slip condition can be applied to the velocity. Adopting a mirror-type wall model, the
normal and parallel components of velocity in the ghost cell, located behind the boundary,
are equal in magnitude to those inside but with opposite directions. As a consequence, all
convective flux components through the solid boundary will vanish as soon as the steady
condition is reached. For the remaining condition it is assumed that the density has a zero
normal gradient. For the pressure, if the wall is stationary, we have ∇ p= [0,−�g].

(iv) Symmetry boundary: These may be implemented either in a cut cell, to generate a slip
wall, or in an uncut Cartesian cell. The implementation is similar to the no-slip condition
(iii) except that the velocity in the ghost cell is determined so as to impose the symmetry
condition, q · n= 0, where q= (u, v)T and n is the wall normal vector.

4. CARTESIAN CUT CELL MESH

The Cartesian cut cell approach provides an alternative to traditional structured or unstructured
body-fitted mesh. Using this approach meshes can be generated very efficiently using standard
algorithms from computer graphics [17]. A uniform stationary background Cartesian mesh is
employed, and the solid regions are simply cut out of the mesh. This results in the formation
of three main types of cells, namely, the fluid cell, the solid cell and cut cell, see Figure 1.
The use of cut cells leads to a boundary conforming representation of the geometry without the
necessity of making the boundary a co-ordinate surface. Thus, no grid generation is performed
in the conventional sense; all that is necessary is to calculate the intersections of a series of line
segments with the background Cartesian mesh.

In order to generate the cut cells, the boundaries of solid regions are defined as polygons, each
consists of a set of co-ordinate points which set up in an anti-clockwise direction. The number of
points defining the body may be increased to generate smoother boundaries, but the underlying
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Figure 1. Three types of cells.

Figure 2. Finding intersection points of line segment.

definition is still considered piecewise linear. Furthermore, we impose the restriction that the
minimum distance between two adjacent points, defining a single polygon, must be greater than
the minimum mesh width. More than one solid region can be cut from the grid by specifying
additional sets of points.

Suppose the intersection points of a particular straight line segment, defined in terms of its start
and end co-ordinates (xs, ys) and (xe, ye) are to be found as follows. The address (Is, Js) of the
cell containing the start point is given by

Is = int

(
xs − x0

�x

)
+ 1 and Js = int

(
ys − y0

�y

)
+ 1 (4)

where x0 and y0 are the co-ordinates of the bottom left corner of the computational domain. The
address (Ie, Je) of the end point is found in a similar way. For convenience we identify which
of the four quadrants (0, 90◦], (90, 180◦], (180, 270◦] or (270, 360◦] the slope of the line lies in.
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Once the grid cells containing the start and end points of the line segment have been identified and
its slope computed the required intersection points can be found. Figure 2 shows a line segment
which cuts across a uniform background Cartesian mesh. The two intersection points of each cut
cell must be located in the same background Cartesian cell. For the slope of the line is lied on
(0, 90◦], the cut cell (i, j) has the entry intersection point a and the exit intersection point b.
Meanwhile, the point b is the entry point of the next cut cell, and the exit intersection point is c.
All the intersection points for subsequent grid cells intersected by the solid boundary line segment
can be easily calculated. The cases where the slope of line lies in other quadrants can be treated
analogously.

Once all intersection points have been found, the information necessary for the flow solver such
as the normal direction of the outward pointing for each solid face, the centroid and side length
normal, etc. for each cut cell can be easily obtained.

5. NUMERICAL SOLUTION

A requirement for treating the cut cells is that a finite volume approach is taken for discretizing
the governing equations. Here, Equation (1) is integrated over an arbitrary control volume giving

�Qi, j Vi, j
�t

= −
∮
S
F · n ds + BVi, j = − R(Qi, j ) (5)

where Qi, j is average quantities at cell (i, j) stored at the cell centre, s and Vi, j denote the
boundary of the cell and area of cell (i, j), respectively. The surface integration on the right side
of Equation (5) is evaluated by summing the flux vectors over each side of a cell, and the discrete
form of the integral is

∮
S
F · n ds =

m∑
k=1

Fk�lk (6)

where m is the number of the interfaces of cell (i, j); Fk is the numerical flux through interface
k of cell (i, j); and �lk is the length of the interface. In the present study each fluid cell or
solid cell has four interfaces, and each cut cell has three, four or five interfaces as shown in
Figure 3.

5.1. Flux evaluation

In this study, Roe’s flux splitting scheme is adopted to calculate the numerical inviscid fluxes.
At each cell face, assuming a 1D Riemann problem in the direction normal to the cell face, the
numerical inviscid fluxes can be expressed as follows:

F I
k = 1

2 [F I (Q+
k ) + F I (Q−

k ) − |A|(Q+
k − Q−

k )], |A| = R|�|L (7)

where Q+
k and Q−

k are the reconstructed right (or top) and left (or bottom) states at interface k of
cell (i, j) and A is flux Jacobian matrix evaluated by Roe’s average state. The quantities R and L
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Figure 3. Calculation of gradients on the cut cell.

are right and left eigenvectors of A, � is the eigenvalues of A. The inviscid flux Jacobian Ainv is

Ainv = �(F · n)

�Q
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 nx ny 0

−u2nx − uvny 2unx + vny uny �nx

−uvnx − v2ny vnx unx + 2vny �ny

−unx
�

− vny
�

nx
�

ny
�

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8)

and its eigenvalues are given by

�1,2 = unx + vny, �3,4 = 1
2 (unx + vny ± c) (9)

where c=
√

(unx + vny)2 + 4�/�.
To achieve second-order accuracy, a piecewise linear model for the cell variables must first be

reconstructed from the stored cell centre data before the two Riemann states at each cell edge are
computed. For a given cell with centre point (i, j), for example, this requires the reconstruction
of the cell variables in the form

Q(x, y) =Qi, j + ∇Qi, j · r (10)

where r is the vector from the cell centre to any point (x, y) within cell (i, j), Qi, j is the cell
centre data at the cell, and ∇Qi, j is the gradient of solution data at cell (i, j).

For flow cells which are away from a solid boundary, the gradient is evaluated using the known
data at of neighbouring cell centres, and a slope limiter function is applied to prevent spurious
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overshoots or undershoots

∇Qi, j =G

[
Qi+1, j − Qi, j

�x
,
Qi, j − Qi−1, j

�x

]
nx + G

[
Qi, j+1 − Qi, j

�y
,
Qi, j − Qi, j−1

�y

]
ny (11)

where �x and �y are the uncut cell side lengths in the x and y directions, respectively. G is the
slope limiter function.

In the present calculations, the limiter function is taken as

G(a, b) = s · max[0,min(k|b|, s · a),min(|b|, ks · a)] (12)

where s = sign(b) and 1�k�2. Differences in the choice of k are marginal in this scheme and do
not affect its numerical stability. When k = 1, Equation (12) reduces to the Minmod limiter; whilst,
if k = 2, Equation (12) is equivalent to Roe’s Superbee limiter; in practice, k = 1.5 has been found
to give the best performance and was used in the present simulations.

For cut cells which have a solid boundary, the boundary condition should be taken into account
for the calculation of the gradient [16]. By applying the solid wall boundary condition, the variables
in fictional cell R can be obtained by (see Figure 3)

�R = �i, j

vR = −vi, j

pR = pi, j − �i, jgny|RO|
(13)

where v= unx + vny. The gradient on cut cell (i, j) may be of two types: fluid and solid. We
calculate the fluid gradients and solid gradients separately, i.e.

Qf
x = G

(
Qi+1, j − Qi, j

�xi+1/2, j
,
Qi, j − Qi−1, j

�xi−1/2, j

)

Qf
y = G

(
Qi, j+1 − Qi, j

�yi, j+1/2
,
Qi, j−1 − Qi, j

�xi, j−1/2

) (14)

where �xi+1/2, j = xi+1, j − xi, j , �yi, j+1/2 = yi, j+1 − yi, j and

Qs
x = G

(
QR − Qi, j

�xi,R
,
Qi, j − Qi−1, j

�xi−1/2, j

)

Qs
y = G

(
Qi+1, j − Qi, j

�yi, j+1/2
,
Qi, j − QR

�y j,R

) (15)

where �xi,R = xR − xi, j , �y j,R = yi, j − yR and G is the same slope limiter function as before.
Once the two types of gradients are calculated, a length average technique is used to obtained

unique gradients in the cut cell,

Qx = �ysQs
x − �yfQf

x

�y

Qy = �xsQs
y − �xfQf

y

�x

(16)

where �xf = |AB|, �xs = |BC|, �yf = |CD| and �ys = |DE|.
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Finally we can obtain the gradient vector

∇Qi, j =Qxnx + Qyny (17)

By involving the cut cell, the local accuracy will be between first- and second-order, but in practice
it has been seen not to adversely affect the globe accuracy of this calculation method [16].

The viscous fluxes Fv
k are discretized using central difference approximations directly at a given

cell face. The viscosity required at the cell face is computed by linearly interpolating between
neighbour main cell centre values

�= 1
2 (�i + �i+1) (18)

It should be noted that since the viscosity is assumed to be uniform within each fluid, the numerical
value of � at a given point can be derived from knowledge of the density distribution as follows.

First, define a parameter � as

� ≡ � − �2
�1 − �2

(19)

It can be seen that � is one in the first fluid and zero in the second fluid. Accordingly, the viscosity
can be computed from

�= ��1 + (1 − �)�2 (20)

The viscous flux Jacobian Avis is

Avis = �(F · n)

�Q
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0
�
�x

nx + �
�y

ny 0 0

0 0
�
�x

nx + �
�y

ny 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

The viscous fluxes over the solid edge of the cut cells can be directly evaluated similarly for the
vertical and horizontal directions as

Fs�Ls = �i, jUi, j |BD|/|RO| (22)

where |BD| and |RO| see, Figure 3.

5.2. Integration in time

By discretizing Equation (5) in time and omitting the subscripts for simplicity, the first-order
Navier–Stokes implicit difference scheme can be expressed as

(QV )n+1 − (QV )n

�t
= −R(Qn+1) (23)

where V is the computational cell area. To achieve a time-accurate solution at each time step for
unsteady flow problems, Equation (23) must be further modified in order to attain a divergence-free
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velocity field. This is accomplished by introducing a pseudo-time derivative into the system of
equations, as

(QV )n+1,m+1 − (QV )n+1,m

��
+ Ita

(QV )n+1,m+1 − (QV )n

�t
=−R(Qn+1,m+1) (24)

where � is the pseudo-time and Ita = diag[1, 1, 1, 0]. The right-hand side (RHS) of Equation (24)
can be linearized using Newton’s method at m + 1 pseudo-time level to yield[

ImV+�R(Qn+1,m)

�Q

]
(Qn+1,m+1−Qn+1,m) = −

[
Ita

(Qn+1,m+1 − Qn)V

�t
+R(Qn+1,m)

]
(25)

where

Im = diag

[
1

��
+ 1

�t
,

1

��
+ 1

�t
,

1

��
+ 1

�t
,

1

��

]

When �(Qn+1,m) =Qn+1,m+1 −Qn+1,m is iterated to zero, the density and momentum equations
are satisfied, and the divergence of the velocity at time level n+1 is zero. In that case, the system
of equations can be written in matrix form as

(D + L +U )�Qs =RHS (26)

where D is the block diagonal matrix; L is block lower triangular matrix and U is the block
upper triangular matrix. Each of the elements in D, L and U is a 4× 4 matrix. An approximate
LU factorization (ALU) scheme as proposed by Pan and Lomax [23] can be adopted to form the
inverse of Equation (25) in the form

(D + L)D−1(D +U )�Qs =RHS (27)

Within each time step of the implicit integration the sub-iteration is terminated when the L2 norm
of the iteration process

L2 =
{[

N∑
i=1

(Qs+1 − Qs)2
]/

N

}1/2

(28)

is less than a specified limit �. In the present study �= 10−4.

6. NUMERICAL RESULTS

Two test cases have been calculated initially to show the feasibility and accuracy of the method
for viscous flow problems. They are the unsteady Couette flow and the Rayleigh–Taylor instability
problems. After that, the wave run up and over-topping on a smooth sea dike have been performed
to show the applicability of the current method to complex free surface viscous flow problems.
The time step �t used for advancing the solution was within the range of 5× 10−5–5× 10−4 s
and the pseudo-time step was set as the order of 1000 times the real physical time step in order to
accelerate convergence. All the calculations presented here are performed on a NEC SX-6i vector
machine with four nodes. For a typical case using 50× 150 grid points and 20 000 time steps, the
computational time is around 2.5 h.
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6.1. Unsteady Couette flow

In order to evaluate the temporal accuracy of the new technique, we examine unsteady Couette
flow. Two parallel plates are located a fixed distance, D, apart. The top plate moves at a constant
velocity, u= (Ue, 0.0) and the bottom one is kept stationary. A periodic boundary condition is
applied in the x-direction. The computational domain is shown in Figure 4.

In the present simulations, the fluid density � is 1.0 and the Reynolds number Re=UeD/� was
taken to be 10. For this simple case, an analytical solution exists, namely

u(y, t) =Ue
y

D
+

∞∑
m=1

2Ue(−1)

�mD

m

exp(−	�2mt) sin �m y (29)

where 	 is the kinematic viscosity of the fluid and �m =m
/D, m = 1, 2, 3. . . .
A series of normalized velocity profiles at different times for this flow is shown in Figure 5. The

numerical results are obtained using 20 cells in the y-direction. It can be seen that the numerical
solutions are in excellent agreement with their analytic counterparts.

Figure 4. The computation domain for Couette flow.

Figure 5. Normalized velocity profiles across the normalized channel width at different times.
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Figure 6. Illustration of the Rayleigh–Taylor instability problem.

6.2. Two-dimensional Rayleigh–Taylor instability

When a layer of heavy fluid is superposed over a layer of light fluid in a vertical gravitational
field, the initial planar interface is unstable. Any disturbance will grow to produce spikes of heavy
fluids moving downward and bubbles of light fluids moving upward. This phenomenon is known
as the Rayleigh–Taylor instability.

The present work considers the two-dimensional Rayleigh–Taylor instability for a viscous in-
compressible case with two fluid layers. The kinematic viscosity is assumed to be the same for both
heavy and light fluids, and the density ratio (�1/�2) for the fluids is set to be two. As illustrated
in Figure 6, the fluids are confined within a rectangular domain of width L = 0.02 and height
H = 0.06, which is bounded above and below by impermeable walls, and the interface of the two
fluids coincides with y = 0. The flow field is assumed to be symmetric about the left and right
boundaries. Following the work of Daly [24], a single wavelength perturbation is introduced at
the fluid interface by using the following initial velocity field:

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


A�y

2L
sin

(
x

L

)
exp

(

|y|
L

)
, y�0

−
A�y

2L
sin

(
x

L

)
exp

(
−
|y|

L

)
, y<0

v = 
A�y

2L
cos

(
x

L

)
exp

(
−
|y|

L

)
(30)

where A is the perturbation amplitude and �y is a representative mesh increment in the vertical
direction. The velocity field corresponds to a sinusoidal perturbation of wavelength 2L . To complete
the specification of the initial conditions, the density field was prescribed as shown in Figure 6,
while the initial pressure was set to a hydrostatic distribution initially.

On the case of unity perturbation amplitude A and Reynolds number of 28.3, three different
uniform grid sizes 32× 96, 40× 120, 50× 150 were chosen for a mesh refinement study [25].
The displacement of the interface at the left-wall was measured at t = 6.0 and the results for grid
convergence are shown in Table I. Checking the solutions with Equation 5.10.5.2 [25], the result
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Table I. Grid convergence results for Rayleigh–Taylor instability.

Displacement of the The order of Gird convergence
Grid interface at the left wall convergence index (%)

50× 150 0.20497 1.8937 2.1965
40× 120 0.20686 — 3.3209
32× 96 0.20975 — —

Figure 7. Free surface motion for Rayleigh–Taylor instability (Re= 28.3).

is 1.0092, which means the solutions are well within the asymptotic range of convergence. For the
following studies, the fine grid size 50× 150 was used.

With unity perturbation amplitude A, two cases were run initially for Reynolds numbers 28.3 and
283. The computed evolution of the free surface is shown in Figures 7 and 8. In both the cases, the
initial perturbation causes the light fluid to rise along the left boundary and the heavy fluid to sink
along the right boundary. In the early stage of the computation, the movement of the interface is
small and the displacement of the interface is seen to be symmetric. As time evolution continues,
the amplitude of the instability increases and the characteristic mushroom shape emerges. The
rollup of the interface is much more pronounced for the higher Reynolds number case due to the
smaller influence of viscous effects, which would tend to smooth out sharp velocity gradients.

According to linear theory, the viscosity has a signification effect on the growth rate of the
Rayleigh–Taylor instability, particularly in the case of short wavelength disturbances. For the
specific case of two fluids with equal kinematic viscosities, Chandrasekhar [26] derived a relation
between the linear growth rate and the perturbation wavelength. This variation can be expressed
in terms of a non-dimensional growth rate n∗ = n�1/3/g2/3 and a modified Reynolds number
Rem = �2/3g1/3/�, where n is the dimension growth rate (with unit of 1/s) and � is the perturbation
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Figure 8. Free surface motion for Rayleigh–Taylor instability (Re= 283).

wavelength. From this result, the maximum growth rate and its corresponding wavelength can be
determined for a given density ratio, kinematic viscosity and gravitational acceleration.

In order to determine whether the present method could reproduce the growth rates predicted
by linear analysis, a series of calculations was performed for a density ratio of two using six
different values of kinematic viscosity, corresponding to modified Reynolds numbers, Rem, of
20, 40, 80, 200, 400 and 800. In these calculations the amplitude of the small perturbation, A, was
taken to be 0.1 in order to maintain the linear behaviour of the solution over the duration of the
simulation.

The growth rate was calculated from the numerical results using a procedure adapted
by Daly [24]. A comparison of the computed non-dimensional growth rates with the variation
predicted by the linear analysis is given in Figure 9. It can be seen that the numerical results are
once again in good agreement with the theoretical results.

6.3. Wave run up and over-topping of a smooth sea dike

Troch et al. [27] simulated wave run-up and overtopping of a smooth impermeable sea dike.
The 0.8m tall dike with a 0.3m wide crest stands in 0.7m deep water, the seaward slope is 1:6
(Figure 10). It is important to note that the artificially low crest ensures that the majority of
the waves overtop the structure. The computations were performed in a computational domain
6.3m× 1.6m which was discretized using a uniform 200× 80 cells grid. Numerical wave gauges
were positioned at 0.01, 1.00m (co-located with the toe of the structure) and 3.81m from the
seaward boundary. The density ratio between water and air is taken as 1000:1. The kinematic
viscosity of water and air are 1.003× 10−6 and 1.8× 10−6 m2/s, respectively, and the value of
the gravitational acceleration is 9.81m/s2. Figure 11 shows the Cartesian cut cell representation
of the seaward slope of the dike.
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Figure 9. Non-dimensional perturbation growth rate versus modified Reynolds number
for Rayleigh–Taylor instability.

Figure 10. The computation domain for sea dike problem.

Figure 11. Local grid layout for the sloping sea dike (cut cells outlined in bold).

At the seaward boundary a series of random waves were introduced by specifying the local
velocity and density distributions. These are calculated using linear wave theory, while the pressure
is extrapolated from the interior of the flow domain. Using this theory, the instantaneous water
velocity at a depth, z, below the free surface is found by linear superposition of N waves whose
amplitude, wave number, and phase shift are determined by sampling an energy spectrum which
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Figure 12. Free surface motion for wave run-up and over-topping on a smooth sea-dike.

forms an appropriate model of the desired sea state, i.e.

u(x, z, t) =
N∑
i=1

ai�i
cosh ki (h + z) sinh ki h

sinh ki h
sin(�i t − ki x)

v(x, z, t) =
N∑
i=1

ai�i
sinh ki (h + z) sinh ki h

sinh ki h
cos(�i t − ki x)

(31)

where ai is the amplitude of the i th component, ki is the wave number of the i th component,
�i/(2
) is the frequency of the i th component and h is the local still water depth. � and k are
related by the, so-called, dispersion relationship �2 = gk tanh(kh). In the present study, a modified
JONSWAP spectrum [28] was chosen as the random wave spectrum at the seaward boundary:

S( f ) = �H2
1/3T

−4
p f −5 exp[−1.25(Tp f )

−4] · �exp[−( f/( fp−1))2/22]

� = 0.06238

0.23 + 0.0336� − 0.185/(1.9 + �)
· (1.094 − 0.01915 ln �)

 =
{
0.07, f � fp

0.09, f > fp

(32)

where f is the frequency, fp and Tp denote the peak frequency and period, respectively, H1/3 is
the significant wave height (i.e. the 66th percentile of the wave-height distribution) and, � = 3.3 is
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Figure 13. The velocity field for wave run-up and over-topping on a smooth sea-dike
at t = 5.2, 5.4, 5.6, 5.8 and 6.0 s.

the peak enhancement factor. This spectrum may be used to generate waves characteristic of those
occurring in shallower seas, and was developed as a result of long-term monitoring of the wave
conditions in the North Sea [29].

The numerical simulations were conducted with H1/3 = 0.16m and Tp = 2 s (defined at the
seaward boundary), since the freeboard of the dike was only 0.10m, these conditions mean that
all significant waves will overtop the dike. Figure 12 shows the computed density profiles between
3.5 and 7.0 s, a period which corresponds to approximately two wave periods. As the waves start to
run-up the dike shoaling occurs, causing the wave front to steepen and the wave height to increase,
close to the location of the third gauge (3.81m from the seaward boundary) the wave steepness may
exceed the critical wave breaking criteria and the wave beings to break, forming a plunging breaker
(Figure 13, t = 5.5 s). Lower amplitude waves, for example those shown in Figure 12 between 4.0
and 4.5 s, still overtop the dike but under these conditions green water overtopping occurs—where
the water in the wave simply flows over the dike crest. These results show that the present method
is able to simulate both kinds of overtopping events, whereas techniques which assume a single
valued free surface (e.g. Boussinesq and shallow water models) which have commonly been used
to simulate overtopping on this type of structure (e.g. Hedges and Reis [30]) cannot.
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Figure 14. The time history of the free surface at three wave-gauge points.

Figure 15. The time history of the instantaneous discharge at the middle of the dike crest.

Focusing on the plunging breaker at around t = 5.5 s, the velocity field from time 5.2 to 6.0 s
are shown in Figure 13, which include both water and air. It can be seen clearly that the ultimate
collapse of this wave causes a high velocity jet, which overtops the dike. The breaking processes
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Table II. Measured water mass discharging over the dike crest for each
completed overtopping event during the simulation.

Time (s)

No. t start t end Mass of water (kg/m)

1 4.13 5.57 4.71
2 5.60 7.67 9.52
3 7.84 9.75 2.12
4 9.86 11.32 2.21
5 11.42 13.32 12.78
6 13.66 15.91 13.83
7 16.90 19.35 5.32

Figure 16. The wave overturning profiles at four different times.

which lead up to this event cause the jet to entrain a significant amount of air, but the discharge
over the dike associated with these events is still significant.

The time history of the free surface at the three wave gauges is shown in Figure 14. The character
of the random wave and the effect of the slope at the wave are presented clearly. During the period
between t = 0 and 20 s, eight wave overtopping events occur with the last one still unfinished,
which can be seen clearly in Figure 15. The completed overtopping and its last period are shown
in Table II. Four plunging breakers are generated at around t = 5.5, 11.0, 13.2, 19.5 s with wave
breaking proceeding, which exhibit overturning free surface. The computed density profiles for
these plunging breakers are shown in Figure 16.

7. CONCLUSIONS

A numerical scheme, based on the Cartesian cut cell approach, for the two-dimensional Navier–
Stokes equations for unsteady, incompressible, fluid flows with variable density has been developed
and tested. This method captures the interface between two fluids automatically as part of the
solution without special provision along with the other flow variables. Complex geometries arising
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in real flow problems are represented by using the Cartesian cut cell method. An implicit dual-time
iteration technique allows the equations to be solved as a hyperbolic system in a pseudo-time and
accurate solutions obtained at each real physical time step. In this paper, both unsteady Couette
flow and Rayleigh–Taylor instability have been successfully simulated, giving confidence in the
capabilities of modelling the low Reynolds number calculations. The solver has then been applied
to compute wave run-up and subsequent overtopping at a smooth impermeable sea dike. These
results show that the solver may be applied to highly transient free surface calculations of the type
often found in coastal engineering.
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